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The spanning length of a percolation cluster is defined as the difference 
between the maximum and minimum coordinates of the cluster with respect 
to some chosen direction. It is statistically related to the number size of the 
cluster by an exponent that differs from the inverse dimension that would 
characterize a compact cluster. This exponent for large percolation clusters 
in simple cubic lattice sites was studied by the Monte Carlo technique, and 
results are presented. Previous theoretical treatments of this exponent and 
its relationship with other critical exponents are discussed. 
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1. I N T R O D U C T I O N  

The percolation cluster is a one-dimensional " ske le ton"  connecting points in 
a d-dimensional lattice, with a complex topology ~1~ for which such concepts 
such as " length ,"  "vo lume , "  "surface ,"  etc., are ambiguous without  specific 
definition. By the size of a cluster we mean the number of  occupied sites in that  
cluster. 2 We shall define the spanning length of  a percolation cluster in a given 
direction to be the difference between the max imum and min imum coordinates 
or projections of  the cluster in that  direction. 

In a previous publication ~2~ we have shown that  the spanning length is a 
most  useful concept  in discussing percolation in finite volumes, since the 
existence o f  a percolation cluster connecting opposite faces of  a finite volume 
provides the natural  operational  definition of  percolation in that  volume. In  
fact Levenshtein et al. ~s> have defined the critical percolation probabil i typc for 
a finite lattice in terms of  the peak in the probabil i ty distribution for spanning 
of  that  lattice. I f  one had complete statistical informat ion on spanning lengths 
of  clusters together with corresponding information on size distributions of  

1 Army Materials and Mechanics Research Center, Watertown, Massachusetts. 
2 In the present paper we shall refer exclusively to the "site" percolation problem, and 

all our definitions will be within that context. 
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clusters, one would be able to reproduce for arbitrary size lattice the prob- 
ability distribution curves of the sort described in Ref. 3. We have not done 
this in detail; however, we have previously (2) used some simplifying assump- 
tions to discuss the onset of spanning. We shall repeat this argument in the 
next section because of its relevance to the present work and for consistency 
with the present notation. In succeeding sections we shall present the results 
from Monte Carlo studies and discuss the relationship of the present work to 
that  of others. 

2. INEQUALITY FOR SPANNING CLUSTER 

In Ref. 2 we have made the assumption that for large enough clusters the 
relationship between the mean spanning length l and the size of the cluster 
could be described by a power law, 3 

s = const • [l(s)]at t (1) 

We also assumed the power law distribution 4 at percolation for the average 
number ns of clusters of size s, 

n~ = const x s-* (2) 

We then argued that the condition for critical percolation is equivalent to the 
condition for finite probability of spanning a box growing to infinity; namely 
that the probability for the existence of clusters of spanning length l or greater 
in a d-dimensional box of side l must not go to zero with large l. This prob- 
ability is proportional to 

s ~ d~ (3) /'/s 
span(l) 

The proportionality constant in Eq. (2) will be linear in S, the total 
number of lattice sites in the box, which in turn varies as l a. The integral in (3) 
will therefore be proportional to 

S s ( I )  -*+1 oc S l - a ,  *(~-1) oc In -a ,  *('- x) (4) 

The condition that the integral be nonzero for large l is then simply 

d >/ 4 t ( r  - 1) (5a) 

o r  

6 t  <<- d / ( r  - 1) (5b) 

Since r is slightly greater than two, de? will be somewhat less than the 
dimensionality d. 

a The mnemonic for the notation dr? for the exponent will be discussed in Section 4. 
4 We shall also discuss this distribution at greater length in Section 4. 
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3. MONTE CARLO RESULTS 

Using the same Monte Carlo techniques described earlier, (1,2) we deter- 
mined the size distribution of percolation clusters for the simple cubic lattice 
with nearest neighbor sites (SC-1) as a function of concentration. In addition, 
we recorded the spanning length for each cluster in o n e  of the three principal 
cubic directions. 5 Figure 1 shows a log-log plot of spanning length vs. cluster 
size. The figure shows considerable scatter, because of the fact that we have 
not plotted the m e a n  spanning length for each size, because of insufficient data 
at each individual size; Fig. 2 shows a plot of the same data where partial 
averaging has been done by averaging data in size groups. The slope of the 
line in Fig. 1 is 2.66 + 0.13, where the error represents that based upon a 
least squares fit, weighting all clusters of size 512 and above equally. Inclusion 
of smaller clusters would somewhat lower the estimated exponent, and in fact 
such considerations make the error estimate a lower limit. The inequality (5) 
with d, t  = 2.66 + 0.13 leads to the corresponding inequality ~- ~< 2.13 _+ 
0.005. The size distribution data we have obtained for the SC-1 site problem 

5 It would have been of interest to record this length in several directions to obtain 
quantitative data on anisotropy. This was not  convenient with the current computer 
program. We have, however, measured the spanning lengths in the [10] and [01] of 
45-site clusters (40 < s < 650) on the SQ-1 lattice by graphical methods. This limited 
sample indicates that  any anisotropy is small, i.e., the ratio of the spanning lengths in 
the two directions is comparable to that  arising from a r andom distribution of ellipses 
whose major /minor  axis ratio is 1.5. 
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Fig. 1. Spanning length of percolation clusters vs. size for longer clusters (s /> 512) on 
SC-1 lattices of size (86) a. Data  are for p = 0.311 and from seven trials each with an 
independent random number  starter. 
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Fig. 2. The same data as in Fig. 1, but with data for the smaller clusters (512 ~< s ~< 5792) 
divided into seven groups by size and the average spanning length in each group plotted 
vs. the geometric mean of the size group. The width of the size groups increases geo- 
metrically by a factor of ~/2. The line drawn is that  from Fig. 1. 
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Fig. 3. Size distribution of percolation clusters on SC-1 lattices of size (86) 3 forp  = 0.311. 
Data  averaged over eight independent trials. Open squares indicate size intervals in which 
fewer than ten clusters were observed. 



Spanning Lengths of Percolation Clusters 57 

is p lo t ted  in Fig. 3. In  the p lo t  we have g rouped  the da t a  according  to the 
me thod  we have used previously.  (1,2) ~- is de te rmined  f rom the slope of  the  
s t ra ight  line fit to the  size da ta  in this figure. A g a i n  there is a cer ta in  a m o u n t  
of  j udgemen t  to be used in deciding which poin ts  should  be excluded f rom the 
least  squares fit, and  in fact  wha t  weight ing factors  should  be used. The da ta  
for the smaller  size groupings  have the least  s ta t is t ical  error ,  because of  the  
larger  numbers  of  clusters in these g roups ;  however ,  by  defini t ion ~- represents  
the  asympto t i c  slope for large clusters, and  the smaller  clusters should be 
discounted.  The largest  size groups  not  only suffer f rom the largest  f luctua- 
t ions,  but  are influenced more  by the finite size o f  the s imula ted  lat t ice and  
by  the uncer ta int ies  in Pc for  the  SC-1 latt ice.  Thus a least  squares fit to the 
da t a  for  8 ~< n~ < 4096 yields ~- = 2.13 + 0.007. On the o ther  hand,  for 
64 ~< n~ < 4096 we obta in  r = 2.18 + 0.024. Weigh t ing  the da ta  for  16 ~< 
n~ < 1024 more  heavily,  we judge  the mos t  p robab le  value of  r to be 
2.15 + 0.03. W e  deduce  6 f rom G a u n t ' s  work  the value ~- = 2.20 + 0.05. 

Thus we find no inconsis tency be tween the inequal i ty  (5) and the present  

results or  even the poss ib i l i ty  tha t  (5) is an exact  equali ty.  We  have only 
pre l iminary  M o n t e  Car lo  results of  di~" and ~- in two dimensions ,  but  if  we 
assume tha t  the radius  of  gyra t ion  tha t  was recorded  in Lea th ' s  work  (6) is 
p r o p o r t i o n a l  to the spanning  length, 7 then we can use his results for  the SQ-1 
site lattice.  F o r  clusters in the size range  100-1000 he measures  the exponent  
as 1.634 and 1.764 at  p = 0.50 and 0.55, respectively.  Ex t rapo la t ing  l inearly 
to Pc = 0.59 suggests dyt = 1.87 the re2  I f  we assume a value of  ~- f rom 
G a u n t  and  Sykes, (4) then d / ( r  - 1) = 1.89, again  consis tent  wi th  e i ther  the 

equal i ty  or  inequal i ty .  

4. CLUSTER SIZE D I S T R I B U T I O N  A N D  M O M E N T  RELATIONS 

The asympto t ic  form of  the  size d is t r ibu t ion  funct ion n~, the p r o b a b l e  
number  o f  perco la t ion  clusters of  size s, tha t  we have used has been discussed 
extensively in the l i terature.  Quinn e t  al .  (1"2) discussed the numer ica l  evidence 

6 If we identify (~- - 2) -1 with the exponent ~p for which Gaunt and Sykes (4) and 
Gaunt (5) have the two- and three-dimensional series results ~p = 18.0 + 0.75 and 
3~ = 5.0 + 0.8, respectively, this yields r = 2.056 + 0.002 (2D) and ~" = 2.205 + 
0.053 (3D). 

7 For both random walks and self-avoiding walks the ratio of mean square radius of 
gyration to mean square length approaches a constant value (albeit different for the 
two cases) with large numbers of steps. (7) The spanning length (diameter) of a cluster 
produced by a random or self-avoiding walk would likely be on the average twice the 
mean square radius. 

8 While Leath does not give probable errors for these data, we guess that the probable 
error on the extrapolated result is at least + 0.03. 
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for this form in various lattices and give estimates of the value of ~- that  is 
numerical ly somewhat  larger than  2. The distr ibution funct ion for percolat ion 
clusters has also been discussed by others, (8'~ and quite extensively by 
Stauffer.(10- a3~ Away from Pc there is a very sharp fall-off of ns from the power 

law form above some dominan t  value of s, call it Sdom, depending strongly 

upon  ]Pc - P l. Al though the form of this falling off has received considerable 
at tent ion,  (12'13~ we shall, for simplicity and without  affecting our final results, 
assume that  ns falls abrupt ly  to zero at Saom. The concentra t ion dependence 
of Sdom can then be expressed in terms of the critical exponent  7 governing the 
cluster size dis tr ibut ion near critical9 

s~v oc IPc - PI-~ (6) 

f 
Sdom (3  --*~) 

S~v oc n,s  2 ds oc Saom (7) 

Relations (6) and (7) give the combina t ion  of critical exponents for saom, 

Sdo m OC I Pc  - -  P l - ' / (3  - , ,  (8)  

Stauffer (12~ has previously discussed the critical exponents in terms of a 
" typ ica l "  cluster size s~ with 

s~ oc LPc - P [ - ~ ~  (9) 

The identification of sr with Saom gives ~ = (3 - r)/~. 

The quant i ty  s ~  defining the average cluster size may be regarded as the 
zeroth m o m e n t  of a correlation length, where the mth m o m e n t  of this length 

is given (~4~ in terms of the critical exponents 7 and v by 

//'m oc IP~ - P l - , -m~ (10) 

These moments  of the correlation funct ion would be expected below Pc 

9 In our previous work (2~ we had pointed out that, "for p in the immediate vicinity ofpo 
the distribution curves are very nearly parallel to the canonical distribution up to quite 
large cluster sizes." In a footnote on that same page we referred to the fall-off of these 
curves above some cluster size as being consistent with the exponential increase of 
average cluster size nearp~. That is, we estimated the exponent ~, = 1.7 from our results 
on average cluster size vs. p, while when we examined the "fall-off point" vs. p using 
the distribution data in Fig. 2 of Ref. 2 together with additional unplotted data, we 
obtained a value 2.05 for y/(3 - r), consistent with our relation (8). We have also 
examined our size distribution data for the simple cubic lattice forp < pc and this also 
shows the same behavior as with the bcc results. Our simplified distribution function 
may be described in terms of the form given in the literature cited, namely n~ ~ s - ' f ( x ) ,  

where x = s ~ IP~ - Pi. Our form is equivalent to the assumption that f(x) = const for 
x < Xo andf(x) = 0 for x > xo. The normalization conditions onf(x) are not satisfied 
by this choice; however, this produces only higher order corrections to our results. 
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to be proportional to the moments of the spanning length, which we may 
define as 

f lms2n, ds (1 la) /Xm 

OC f sm/a:~:s2rts ds (1 lb) 

where Eqs. (1) and (2) have been used in (1 lb). The identification of moments 
of spanning length with moments of correlation length reflects the fact that 
there is only intracluster correlation over the distance comparable to a 
spanning length and no intercluster correlation. 

We have used our Monte Carlo data on spanning length and size for the 
SC-1 lattice to plot the moments [x m = ~ lmS 2 at various concentrations. 
From (10) the slope of the curves when log ~,~ is plotted against log!pc - Pl 
will yield ~, + my. Figure 4 shows these curves with the choice Pc = 0.3115. 

Figure 5 shows these slopes vs. m. From this we determine the v a l u e s  
~, = 1.65 _+ 0.04 and v = 0.77 + 0.03 (Pc = 0.3115). The curves in Fig. 2 
and hence their least-square-fitted slopes depend upon the value chosen for Pc 
and we can write ~, = 1.65 + 0.50(pc - 0.3115), v = 0.77 + 80(po - 0.3115). 
On the other hand, the same data show that the dependence on the assumed 
value for Pc nearly vanishes for the ratio V/v which is equal to 2.13 + 0.10. 

I I I 

m~3 

1015 

i010 + + 

1oo I I J 
lo-1 lo 0 lol 1~ 

to.ms-pl 

Fig. 4. Log of  the spanning length moments  vs. logl0.3115 - p[ for percolation clusters 
on SC-1 lattices of  size (86) 3. The moments  are defined as ~m(P) = ~ l ~s2, with the 
summat ion  over all clusters. 
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Fig. 5. Plot of V + m y  vs. m. The quantity y + m y  is determined from the least square 
slopes of the log ,~m(P) vs. tog[0.3115 - Pl plots in Fig. 4. 

Sur e t  a l .  (15~ obtained 0.3115 + 0.0005 as the most probable value of pc 
for the simple cubic lattice consistent with their data, using a simple scaling 
relationship to reduce data corresponding to different lattice sizes. It should 
be noted, however, that they assumed Pc to be independent of the lattice size 
in their scaling. There is evidence, however, that Pc for the simple cubic lattice 
is a slowly decreasing function of lattice size (3~ and therefore a suitably 
modified scaling law might have reduced their estimate of pc. Kirkpatrick ~16) 
has obtained 0.312 + 0.001, while Dean and Bird, (17,~8~ using a different 
criterion for Pc, suggested 0.320 + 0.001. We may also note that a rough 
estimate based upon our data on cluster spanning length at p = 0.311 
indicates the probability for spanning is 59~o, consistent with this being near 
the peak in the probability distribution, which is Pc as defined in Ref. 3.1~ 
This reference also shows that the distribution will have a standard deviation 
denoted by W, which will vary as the linear dimension of the lattice to the 
power -1/v. For a lattice of size (86)% W is about 0.0033. We tried plotting 
our data from our Monte Carlo computation for a lattice of size (86) a, plotting 
the quantities that are usually assumed to diverge as l o g [ p c -  p], using 
instead the abscissa log[(pc - p)2 + W2]~/2. This is shown, for example, in 
Fig. 6, For this choice we found a definite improvement in linearity for the 

lo The 597o figure would indicate that pc is about 0.23 standard deviation lower. How- 
ever, our probability estimate is at present much too crude (_+ 207o) to say any more 
than that it does not rule out most suggested values of pc. 
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Fig. 6. Plots of/~o = ~ s = vs. 1og[(0.3115 - p)2 + W=]lt=. (a) W = 0, least squares 

slope = 1.63 + 0.07; (b) W = 0.0033, least squares slope = 1.80 _+ 0.08. 
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points having values o fp  near Pc. Whether this fact will prove to have funda- 
mental significance remains to be seen. In any case it would seem preferable 
to base the definition of pc for a finite lattice upon data relating to the expected 
approach to a singularity. 

Returning to our discussion of (1 lb) with the upper limit in the integral 
taken as Saor,, we have 

/z m oc Saom(3 - "r + m/drqT) (12) 

With (8) this yields the relationship 

~m oc Ipc - pl-~(3-~{-m[aJ"~)/(a-*) (13) 

Consistency between (10) and (13) yields 

v = ~,/[dfl'(3 - ~-)] (14) 

o r  

d r t  = ( 7 / 0 ( 3  - ~ ) - 1  (15) 

We note that Stanley et al. ~8~ have defined a fractal dimension d r for the 
percolation problem as equal to the ratio of the critical exponents ~, and v, 
which respectively describe the average cluster size ~ s~v and the average 
correlation length ~. Our mnemonic dft is to suggest that one can make the 
same kind of argument to regard dst as a fractal dimension. 

It may be noted that Leath c6~ has also applied the concept of fractal 
dimension to the relation between the number of open sites bordering the 
cluster and the size of the cluster. This work has been discussed by Stauffer (la) 
and Domb. <23~ Stauffer ~13~ makes a distinction between the numerous internal 
surfaces defined by open sites within the cluster and the external bounding 
surface of the cluster. He discusses the volume enclosed by this bounding 
surface and how it varies as a function of cluster size. Although it seems 
difficult to make a precise definition of this volume, we might identify it with 
a mean spanning volume of a cluster defined as one proportional to the dth 
power of the mean spanning length. Stauffer suggests there will be three 
regimes of variation--for small, intermediate, and large sizes, such that the 
spanning volume will be linear with size (i.e., ( l )  a oc s)  for both large and 
small sizes. Our data on the largest clusters we sampled were all consistent 
with a nonlinear relation between spanning volume and size, ( l )  a oc s(a/ar *), 
characteristic of the intermediate range. If the equality in (5) holds [see 
discussion after (18)], then the exponent d/drt  is identical with the exponent 

~ s ~  - Y (all clusters)s2/~ (all clusters)s. In  integral fo rm this would be 

s ,~=-fs~n,  d s / f sn ,  ds. 

The denomina to r  is the total  number  of  occupied sites. 
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1 + 1/6 given by Stauffer (~a) in his Eq. (5b). Because our observations were 
made below and in the neighborhood of pc, Stauffer's hypothesis on the upper 
linear region remains untested. 12 It is also interesting to note that Stauffer's 
hypothesis on the behavior of percolation clusters is based very closely upon 
the analogy with the theory of droplets in the critical region as proposed by 
Fisher, (19~ with many of the equations of the present paper relating critical 
exponents and dlt  having been anticipated in pursuit of  this analogy. (2~ 

5. OTHER CRIT ICAL C O N S T A N T  R E L A T I O N S H I P S  

By arguments similar to those presented above, Stauffer ~12'1a~ related 
and r to the critical exponents e and/3 by 

2 - a = (~- - 1)/a = 7(r - 1)/(3 - -r) (16) 

= ( ~  - 2 ) / ~  = 7 ( ~  - 2 ) / ( 3  - ~ )  ( 1 7 )  

leading to the scaling law 7 + 2/3 = 2 - c~. Using Eqs. (15) and (16), the 
inequality (5) becomes 

2 - c~ <~ v d  (18) 

Dunn e t  al .  ~4~ discussed the inequality (18) following their Eq. (67) describing 
the two-exponent equality, arguing that the inequality is related to the inter- 
penetration of clusters, which perhaps is more likely in three than in two 
dimensions. Equation (17) is equivalent to the scaling law 6 = ( 7 / 8 )  + 1, 

providing r - 2 is identified with 1/6. 

6. S U M M A R Y  A N D  C O N C L U S I O N S  

Analysis of Monte Carlo computations on size and spanning length 
distributions of percolation clusters have qualitatively confirmed theoretical 
concepts and relationships among critical exponents. It  is anticipated that 
further computations on larger lattices and with increased statistical sampling 
will make possible more precise tests of these relationships, while comparisons 
of results on different lattice geometries will similarly test universality hypoth- 
eses. There still remains the problem of deciding how best to analyze the 
results of such computations to extract the optimum values of the relevant 
coefficients. Scaling methods such as those used by Sure t  al .  ~15~ are a step in 

12 From Leath's observations (6~ the exponent relating size and radius of gyration increased 
withp. The data are consistent with it approaching d~t asp --~p~ and approaching das 
p ---~ 1. 

la Domb(21~ has also commented on the relation of the Fisher droplet model to percola- 
tion cluster geometry. Coniglio et  al. ~22~ have recently discussed the relationship 
between percolation and condensation Of physical clusters. 
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the r ight  direct ion,  but  do not  answer the quest ion of  how to p roper ly  weight 
or even reject da ta  describing small  clusters or  small  lattices or  concent ra t ions  
too  far away from Pc and which therefore  have not  reached the p roper  
asymptot ic  region where scaling applies.  Ex t rapo la t ion  methods  similar  to 
the series methods  tha t  utilize in format ion  on the smaller  size clusters wi thout  
necessari ly assuming they are in the comple te  asympto t ic  range are  needed 
to make  the most  efficient use of  the M o n t e  Car lo  data .  
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